Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 95(10): e10930, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37746676

RESUMO

In this study, the integration of carbon nanotube (CNT), graphene, and biochar (BC) with zinc oxide nanorods (ZnO NRs) was investigated for efficient water pollutant removal. Two types of ZnO NRs/BC hybrids (BC on top and bottom of ZnO NRs) were synthesized and compared to other carbon material-based ZnO NRs combinations. Methylene blue (MB) adsorption efficiency was evaluated for various carbon material-based ZnO NRs composites, revealing good performance in ZnO NRs/BC hybrids, particularly with BC on top. The adsorption efficiency reached an impressive 61.79% for ZnO NRs/BC, surpassing other configurations. MB removal by ZnO NRs/BC fitted well with pseudo-first-order kinetics and the rate constants of MB adsorption is 9.19 × 10-2 1/min (R2 = 0.9237). Surface characterizations revealed a distinctive distribution of BC grains, with denser aggregation observed on top of ZnO NRs. This unique distribution contributed to higher MB adsorption rates, substantiated by Fourier transform infrared spectroscopy (FTIR) analysis that showcased stronger MB adsorption in ZnO NRs/BC hybrids. Notably, the enhanced MB adsorption rates were attributed to the population of BC grains. This research establishes ZnO NRs/BC composites as promising candidates for effective water pollutant removal. The developed materials can be combined with the existed conventional wastewater treatment systems to further purify the water quality. PRACTITIONER POINTS: ZnO NRs/BC hybrids achieve a remarkable 61.79% efficiency in removing MB pollutants, surpassing other carbon materials. MB removal using BC-based materials follows pseudo-first-order kinetics. BC grains exhibit unique distribution patterns on ZnO NRs, with densely packed grains atop contributing to higher MB removal. FTIR analysis confirms increased MB-related bond vibration, supporting the effectiveness of ZnO NRs/BC hybrids for water pollutant removal.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Poluentes Químicos da Água , Poluentes da Água , Óxido de Zinco , Óxido de Zinco/química , Azul de Metileno/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Membranes (Basel) ; 12(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323803

RESUMO

In this paper, tungsten oxide (WO3) is deposited on a silicon substrate applied in electrolyte-insulator-semiconductor structures for pH sensing devices. To boost the sensing performance, yttrium (Y) is doped into WO3 membranes, and annealing is incorporated in the fabrication process. To investigate the effects of Y doping and annealing, multiple material characterizations including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are performed. Material analysis results indicate that annealing and Y doping can increase crystallinity, suppress defects, and enhance grainization, thereby strengthening membrane sensing capabilities in terms of sensitivity, linearity, and reliability. Because of their stable response, high reliability, and compact size, Y-doped WO3 membranes are promising for future biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...